Dynamic Change Case and Post-MAPS Analysis

Tariq N. Niazi Senior Manager, Consumer Interest Liaison

Integrating Public Policy Task Force (IPPTF)

August 6, 2018 Rensselaer NY

DRAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED

Introduction

Introduction to Issue Track 5 "Dynamic Analysis"

- Issue Track 5 (IT5) consists of modeling and analysis to refine customer cost impact estimates.
- GE MAPS production cost modeling will serve as the basis of this analysis.
- However, supplemental analyses are needed to estimate "dynamic" effects that change customer costs beyond direct effects on LBMP and refunded carbon charges.
- This presentation:
 - Introduces each dynamic component of net customer cost
 - Reviews how each component was estimated in the 2017 Report
 - Summarizes refinements to each dynamic component under IT5
- The Brattle Group is assisting the NYISO with the Issue Track 5 analysis.

Customer Cost Impact Analysis

- IT5 Updates: Primarily Informed by MAPS Analysis.
 - Impact on Wholesale Energy Prices.
 - Carbon Residuals.
- IT5 Updates: Static and Dynamic Effects Informed by both MAPS Analysis and Other Supporting Analyses.
 - Lower ZEC Prices.
 - Lower REC Prices.
 - Increased TCC Value.
 - Adjustments to Static Analysis due to new entry of resources.
 - Carbon Price-Induced Carbon Abatement (Avoids RECs).

Wholesale Energy Prices

Impact on Wholesale Energy Prices

- Assumption: A carbon charge would generally increase wholesale energy prices when carbon-emitting resources are on the margin.
- Previous Analysis Approach
 - Assume historical 2015 MERs are indicative of 2025 MERs, given that reduction in generation from Indian Point will be offset by increased renewable generation from CES.
 - Use historical data on marginal units to inform 2015 MER estimates.
 - Assume \$40/ton carbon charge.

Impact on Wholesale Energy Prices

Proposed Updates

- Use MAPS to simulate LBMPs given assumed carbon charges and emissions rates.
- Assumed carbon charges are the gross and net carbon charges as presented by DPS staff during the 4/23 IPPTF presentation.*
 - \$41/ton in 2020, \$48/ton in 2025, \$57/ton in 2030.
- Emission rates are already part of the MAPS data.
- For external resources, model "Option 1" by freezing the imports/exports.

*Link to the 4/23 DPS IPPTF meeting presentation: http://www.nyiso.com/public/webdocs/markets_operations/committees/bic_miwg_ipptf/meeting_materials/2018-04-23/IPPTF%20C02%20Value%204%2023%202018%20final%20%20pd.pdf

Carbon Residuals

Carbon Residuals

 Assumption: NYISO would return to Load Serving Entities (LSEs) all carbon charges collected from Carbon Emitting Resources and imports.

Previous Analysis Approach

- Assume historical 2015 NYCA carbon emissions are indicative of 2025 emissions, given that reduction in generation from Indian Point will be offset by increased renewable generation from CES.
- Assume \$40/ton carbon charge.

Carbon Residuals

Proposed Updates

- Directly use emissions results from GE MAPS analysis.
- Use the gross and net carbon charges as presented by DPS staff during the 4/23 IPPTF presentation.
 - Calculate carbon charges on a unit-specific basis (generators <25MW charged at Gross Social Cost of Carbon (Gross SCC), other generators charged at SCC net of RGGI).

ZEC Prices

Lower ZEC Prices

- Assumption: A carbon charge would increase wholesale energy prices, decreasing ZEC prices.
- Previous Analysis Approach
 - Use ZEC price equation to estimate 2025 ZEC prices with and without a carbon price. ZEC equation considers upstate energy and capacity prices.
 - Estimate 2025 Upstate energy prices by adjusting 2015 prices for anticipated changes in gas prices and RGGI prices.
 - Estimate 2025 Upstate capacity prices based on DPS forecast.

Lower ZEC Prices

- Proposed Updates
 - Continue to use ZEC price equation with updated LBMPs informed by GE MAPS analysis.
 - Estimate upstate capacity prices based on the predicted capacity supply and expected demand.

REC Prices

Lower REC Prices

- Assumption: A carbon charge would increase Energy market revenues for new Tier 1 renewable resources supported by RECs, reducing the REC prices needed for renewables to enter and reducing REC payments by customers.
- Previous Analysis Approach
 - Estimate change in energy revenues based on assumed MERs when renewables are generating and assumed generation shape.
 - Assume increased energy revenues reduce REC prices.

Lower REC Prices

Proposed Updates

- Estimate increased energy revenues using updated LBMPs informed by GE MAPS analysis and renewable generation shapes, or direct renewable energy revenue outputs.
- Review assumptions on locations of renewable additions.
- Assume carbon price only reduces customer costs for future CES Tier 1 REC procurements (not procurements already conducted).
- Assume future CES procurements reflect the carbon price in the Energy market, maintaining price reduction assumption.

TCC Values

Increased TCC Value

- Assumption: A carbon charge may increase transmission congestion costs, increasing the Transmission Congestion Contract (TCC) revenues returned to customers.
- Previous Analysis Approach
 - Estimate increases in congestion across Central-East constraint, based on assumed Upstate/Downstate MERs.

Proposed Updates

Use GE MAPS outputs to inform change in NYCA-wide congestion costs.

Adjustments to Static Analysis

Adjustments to Static Analysis due to Entry of CCs

- Assumption: A carbon charge would reward the relative efficiency of combined cycles (CCs), attracting additional investment and reducing the capacity price at which resources will enter, reducing customer capacity costs.
- Previous Analysis Approach
 - Assume a percentage likelihood of CCs entering the market.
 - Assume 67% chance that CCs would enter.
 - Assume if CCs enter, their energy revenue increases, thereby reducing their capacity market offer price and the market equilibrium price. Estimate reduction in state-wide capacity prices using historical demand curve shapes.
 - Assume if no CCs enter, customers reduce energy demand due to higher energy prices. Estimate based on assumed elasticity of demand.

Adjustments to Static Analysis due to Entry of CCs

Proposed Updates

- Estimate upstate capacity prices based on the predicted capacity supply and expected demand.
 - Evaluate the likelihood of several different technologies entering (*e.g.*, CTs, renewables, storage), based on each technology's Net CONE and forecasted capacity price.
 - Evaluate how each technology benefits from a carbon charge.
 - Evaluate how energy and capacity prices respond to additional investment.
- Re-evaluate assumptions regarding energy conservation induced by higher energy prices (and therefore the impact on the peak load).

Carbon Price-Induced Abatement

Carbon Price-Induced Abatement (Avoids RECs)

- Assumption: A carbon charge would incentivize low-cost carbon abatement opportunities not subsidized by the CES. These reductions could reduce the quantity of RECs needed to meet New York's decarbonization goal.
- Previous Analysis Approach
 - Evaluate four potential ways in which a carbon charge could spur emission reductions.
 - Tilting renewable investment to locations with greater carbon abatement rates.
 - Supporting investment in CCs.
 - Incorporating storage and demand response.
 - Incentivizing energy efficiency and conservation.

Carbon Price-Induced Abatement (Avoids RECs)

Proposed Updates

- Use GE MAPS results to calculate emissions reductions due to shifts in commitment and dispatch.
- Evaluate likelihood of carbon charge spurring investment in technologies other than CCs (e.g. renewables or storage).

Next Steps

Next Steps

- Continue simulation in GE MAPS
- Review results September/ October

Questions?

We are here to help. Let us know if we can add anything.

Feedback?

Questions and/or comments can be sent to <u>IPP_feedback@nyiso.com</u>

The Mission of the New York Independent System Operator, in collaboration with its stakeholders, is to serve the public interest and provide benefits to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policy makers, stakeholders and investors in the power system

www.nyiso.com

